FOXO3 Promotes Quiescence in Adult Muscle Stem Cells during the Process of Self-Renewal

نویسندگان

  • Suchitra D. Gopinath
  • Ashley E. Webb
  • Anne Brunet
  • Thomas A. Rando
چکیده

Skeletal muscle stem cells, or "satellite cells" (SCs), are required for the regeneration of damaged muscle tissue. Although SCs self-renew during regeneration, the mechanisms that govern SC re-entry into quiescence remain elusive. We show that FOXO3, a member of the forkhead family of transcription factors, is expressed in quiescent SCs (QSCs). Conditional deletion of Foxo3 in QSCs impairs self-renewal and increases the propensity of SCs to adopt a differentiated fate. Transcriptional analysis of SCs lacking FOXO3 revealed a downregulation of Notch signaling, a key regulator of SC quiescence. Conversely, overexpression of Notch intracellular domain (NICD) rescued the self-renewal deficit of FOXO3-deficient SCs. We show that FOXO3 regulates NOTCH1 and NOTCH3 receptor expression and that decreasing expression of NOTCH1 and NOTCH3 receptors phenocopies the effect of FOXO3 deficiency in SCs. We demonstrate that FOXO3, perhaps by activating Notch signaling, promotes the quiescent state during SC self-renewal in adult muscle regeneration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FoxO3 regulates neural stem cell homeostasis.

In the nervous system, neural stem cells (NSCs) are necessary for the generation of new neurons and for cognitive function. Here we show that FoxO3, a member of a transcription factor family known to extend lifespan in invertebrates, regulates the NSC pool. We find that adult FoxO3(-/-) mice have fewer NSCs in vivo than wild-type counterparts. NSCs isolated from adult FoxO3(-/-) mice have decre...

متن کامل

Isolation, Induction of Neural and Glial Differentiation and Evaluating the Expression of Five Self Renewal Genes in Adult Mouse Neural Stem Cells

Purpose: Isolation, induction of neural and glial differentiation and evaluating the expression of Nucleostemin, ZFX, Hoxb-4, Sox-9 & Bmi-1 self renewal genes in adult mouse neural stem cells. Materials and Methods: Breifly, for isolation of neural stem cells, frontal part of adult mouse brain was minced in PBS and digested by enzyme solution, containing hyaloronidase and trypsin. Isolated cel...

متن کامل

Sprouty1 Regulates Reversible Quiescence of a Self-Renewing Adult Muscle Stem Cell Pool during Regeneration

Satellite cells are skeletal muscle stem cells capable of self-renewal and differentiation after transplantation, but whether they contribute to endogenous muscle fiber repair has been unclear. The transcription factor Pax7 marks satellite cells and is critical for establishing the adult satellite cell pool. By using a lineage tracing approach, we show that after injury, quiescent adult Pax7(+)...

متن کامل

AMPKα1-LDH pathway regulates muscle stem cell self-renewal by controlling metabolic homeostasis.

Control of stem cell fate to either enter terminal differentiation versus returning to quiescence (self-renewal) is crucial for tissue repair. Here, we showed that AMP-activated protein kinase (AMPK), the master metabolic regulator of the cell, controls muscle stem cell (MuSC) self-renewal. AMPKα1-/- MuSCs displayed a high self-renewal rate, which impairs muscle regeneration. AMPKα1-/- MuSCs sh...

متن کامل

Myostatin negatively regulates satellite cell activation and self-renewal

Satellite cells are quiescent muscle stem cells that promote postnatal muscle growth and repair. Here we show that myostatin, a TGF-beta member, signals satellite cell quiescence and also negatively regulates satellite cell self-renewal. BrdU labeling in vivo revealed that, among the Myostatin-deficient satellite cells, higher numbers of satellite cells are activated as compared with wild type....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2014